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ABSTRACT 
Engaging students in formal proof presents a persistent challenge, as learners often default to mechanical step-
following rather than conceptual justification. This paper argues that math games and puzzles, rooted in Piaget’s 
concrete operations, Vygotsky’s (1978) social mediation, and Papert’s (1980) constructionism, provide powerful 
scaffolds for learning proofs. We synthesize Polya’s (1945) problem-solving heuristics and over two decades of 
empirical research showing that puzzle-based instruction deepens proof comprehension, fosters transfer to novel 
contexts, and reduces proof anxiety across age groups. The parity principle serves as a central case study, as 
students repeatedly practice an invariant reasoning schema through domino-tiling puzzles, handshaking graphs, 
take-from-ends games, and sliding-tile challenges, which later undergo abstract proof construction. We conclude 
with practical recommendations for sequencing instruction from manipulatives to symbolic notation, embedding 
heuristic prompts, promoting collaborative discourse, and leveraging technology. By treating proof as a playful 
investigation of “what stays the same,” educators can transform proof from a rote ritual into an accessible, engaging 
process of discovery, equipping learners with durable proof methods for diverse mathematical domains. 
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INTRODUCTION 

Proof sits at the heart of mathematics, yet students often struggle to 
see beyond a sequence of rote steps to the underlying logic that makes a 
proof an explanatory argument (Weber, 2001). In many secondary 
algebra and geometry courses, learners replicate two‐column proofs by 
following templates, “Given …, prove … therefore …”, without 
internalizing the rationale behind each step (Hanna et al., 2008; 
Stylianides, 2007). As a result, they exhibit mechanistic reproduction 
and falter when asked to transfer proof strategies to unfamiliar 
problems. This disconnect between procedural fluency and conceptual 
understanding contributes to cognitive overload and proof anxiety: 
students who can verify individual cases often hesitate when challenged 
to justify a general claim (Hanna et al., 2008). Math games and puzzles 
offer a natural bridge from concrete exploration to formal proof. 
Drawing on Piaget’s view that children form internal schemas through 
sensorimotor manipulation and Vygotsky’s (1978) emphasis on socially 
mediated learning, these activities immerse students in low‐stakes 
environments where they can observe patterns, pose conjectures, and 
test strategies through play (Piaget & Cook, 1952). Indeed, a national 
survey of 248 Australian primary teachers reported that 98 percent 
employ mathematical games weekly, not merely as warm‐ups but as 
central instructional tools to foster engagement, reasoning, and 
differentiation (Russo et al., 2021). More broadly, recent studies 

emphasize that making the mathematics learning experience 
meaningful through engaging, student-centered activities enhances 
both motivation and achievement (Insorio & Librada, 2025; 
Taasoobshirazi et al., 2024). This shows that the value of “playful” 
approaches is being recognized across contexts. Stiefenhofer’s (2022) 
fuzzy‐mapping framework extends this finding to proof instruction, 
showing that even non‐STEM students guided through in-class proof 
games demonstrate measurable gains in engagement, efficiency, and 
satisfaction. Classic puzzles, such as domino-tiling tasks that expose a 
black-versus-white parity mismatch, or 3 × 3 magic-square challenges 
that reveal frequency patterns, lead students organically to invariant 
arguments without formal notation (Applebaum & Freiman, 2025; 
Ginat, 2001). Through repeated hands-on manipulations, learners 
develop informal proof schemas long before they encounter symbolic 
proofs (Blanton et al., 2024; Engel, 1998). These experiences lay the 
groundwork for understanding why certain configurations are possible 
or impossible, preparing students to articulate concise proofs. 

In this paper, we argue that thoughtfully designed games and 
puzzles serve as powerful cognitive scaffolds for teaching a range of 
proof methods. We focus on the parity principle as a central case study. 
We clarify key terminology. We then review foundational theory and 
research on play-based learning and heuristic discovery. After that we 
present the parity principle in puzzle and game contexts, tracing the 
evolution from manipulation to formal proof. We also examine the 

OPEN ACCESS 

http://creativecommons.org/licenses/by/4.0/
https://www.conmaths.com/
https://orcid.org/0000-0002-1131-6188
mailto:mark@kaye.ac.il
https://doi.org/10.30935/conmaths/17404


2 / 8 Applebaum / Contemporary Mathematics and Science Education, 6(2), ep25017 

pedagogical advantages of this approach, how it enhances engagement, 
reduces anxiety, and scaffolds proof construction. We then reflect on 
broader implications for proof instruction and offers concrete 
classroom recommendations. We conclude by demonstrating how 
parity-based puzzles can model the introduction and mastery of proof 
techniques through playful inquiry. 

DEFINITIONS AND SCOPE 

To frame our discussion, it is useful first to distinguish between 
math games and math puzzles, and then to define what we mean by a 
proof method, illustrated here by the parity principle. 

A math game is a rule-bound activity in which one or more players 
make strategic decisions under changing conditions, often competing 
or collaborating to achieve an objective. For example, in Nim-type heap 
games or token-sliding challenges, each move alters quantities that 
students track as invariants: “If I leave a multiple of four tokens, I force 
my opponent into a losing position” (Applebaum, 2025; Ginat, 2022). 
Such games scaffold dynamic proof schemas by inviting learners to 
anticipate opponents’ responses and to understand why certain 
strategies succeed or fail. 

By contrast, a math puzzle presents a self-contained challenge, 
usually to an individual or small group, that has a single correct solution 
or an impossibility proof. Puzzles typically lack adversarial players and 
instead ask questions like “Can you tile this board?” or “How many 
magic squares of order three exist?” Classic examples include the 
mutilated-chessboard domino puzzle and coin-weighing riddles, in 
which learners manipulate objects to uncover invariants such as color 
counts or weight balances (Ginat, 2001; Stylianides & Stylianides, 2009). 
In these contexts, the emphasis is on exploration and discovery rather 
than competition. 

Throughout this paper, we employ the proof method to denote a 
general pattern of logical argument, including direct proof, proof by 
contradiction, and inductive reasoning, which can be instantiated in 
diverse mathematical settings. Our central proof method is the “Parity 
Principle”, an archetypal invariant argument. In many puzzles and 
games, each permissible move either preserves or flips the parity 
(evenness or oddness) of a key quantity. If the parity of the initial 
configuration cannot evolve into the required parity for the goal, then 
no sequence of moves can achieve that target. By clarifying these 
distinctions between games and puzzles, and between a proof method 
and its applications, we establish the conceptual groundwork for 
showing in later sections how concrete play can scaffold learners’ 
progression to formal justification. 

THEORETICAL & RESEARCH BACKGROUND 

Effective integration of games and puzzles into proof instruction 
rests on three interlocking pillars: cognitive and sociocultural theory, 
Polya’s (1945) problem‐solving heuristics, and empirical research on 
puzzle‐based learning. 

From Play to Abstraction 

Piaget and Cook (1952) established that before engaging in abstract 
reasoning, learners construct concrete operational schemas by 
manipulating objects, sorting counters, arranging tiles, and 

internalizing invariant patterns such as “pairing leaves no remainder.” 
Vygotsky (1978) enriched this insight with the concept of the zone of 
proximal development, showing that guided social interaction 
accelerates the shift from physical action to conceptual understanding. 
A prompt like “What stays the same when you move that domino?” 
helps students articulate the invariant they have just experienced, 
translating sensorimotor outcomes into emerging mathematical 
language. 

Papert’s (1980) constructionism and Resnick’s (1997) microworlds 
extend these ideas by positioning learners as designers of their own 
game variants. Differentiated, interest-driven design of activities has 
been shown to uplift engagement and performance across diverse 
classrooms, including non-STEM settings (Insorio & Librada, 2025). 
This underlines that well-scaffolded, meaningful tasks work not just in 
proof but throughout mathematics. When students modify a 
checkerboard tiling puzzle or invent a token‐sliding challenge, they 
externalize hypotheses and iteratively refine their proof schemas, 
reducing cognitive load by offloading abstract reasoning into a playful 
context (Sweller, 1988). Movshovitz-Hadar (2011) applies these 
principles in teacher education, describing a four‐course sequence in 
which pre‐service teachers first solve strategy‐game problems before 
approaching formal proof, thereby bridging pure mathematical content 
and pedagogical practice. 

Empirical studies validate this theoretical framework. Stylianides 
and Stylianides (2009) report that middle‐schoolers who begin with 
invariant puzzles, prompted to find a quantity that never changes, later 
produce more coherent, generalizable proofs than peers starting with 
abstract definitions. Blanton et al. (2024) observe a similar progression 
in kindergarten: children move naturally from noting “one leftover” 
when pairing counters to stating “odd plus odd equals even,” illustrating 
how concrete playgrounds an invariant schema long before formal 
notation appears. 

Together, these cognitive and sociocultural perspectives 
demonstrate that concrete play is more than motivation: it is an 
essential scaffold providing embodied experiences of invariance, social 
supports for articulating emerging insights, and opportunities to 
externalize and refine proof strategies within personally meaningful 
“microworlds,” laying the groundwork for fully abstract, symbolic 
reasoning. 

Polya’s (1945) Heuristic Framework 

Polya’s (1945) how to solve it introduced a four‐phase problem‐
solving cycle,  

(1) understand the problem,  

(2) devise a plan,  

(3) carry out the plan, and  

(4) look back, and a suite of heuristics such as “look for a pattern,” 
“use an invariant,” and “work backwards.”  

In a game‐based classroom, these phases emerge organically: 
students first explore possible moves to grasp the challenge, then 
hypothesize which strategies preserve or flip key quantities, enact those 
moves while monitoring invariants, and finally reflect, asking “Why did 
this succeed or fail?” before writing a concise proof. 

Schoenfeld (1985) identifies parallel metacognitive stages: 
surveying, planning, monitoring, and evaluation, and shows that expert 
problem solvers cycle through them much like students do in a domino‐
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tiling or take‐from‐ends game. Stylianides and Stylianides (2009) 
provide empirical support: when teachers embed heuristic prompts 
such as “Can you find a quantity that never changes?” into invariant‐
puzzle lessons, students detect invariants more rapidly and transfer that 
reasoning to novel proof contexts. Engel’s (1998) problem‐solving 
strategies further illustrates how annotated puzzles serve as think‐aloud 
guides: learners who study these commentaries outperform peers on 
subsequent proof‐construction tasks, showing that making Polya’s 
(1945) heuristics explicit accelerates internalization of proof methods. 

Applebaum and Freiman (2025) extend these findings to teacher 
education, observing that preservice teachers who follow a Polya 
(1945)‐inspired sequence, exploring magic squares for patterns, 
conjecturing why the magic sum must be 15, and then “looking back”, 
demonstrate deeper conceptual understanding and greater confidence 
in crafting new invariant‐based puzzles. Collectively, these studies 
confirm that weaving Polya’s (1945) heuristic cycle into game‐ and 
puzzle‐based activities mirrors both cognitive and metacognitive 
processes of proficient problem solvers and provides a powerful scaffold 
for learners transitioning from concrete play to formal proof. 

Empirical Evidence for Puzzle‐Based Proof Learning 

A robust corpus of classroom research confirms that introducing 
proof through puzzles not only deepens conceptual understanding but 
also enhances students’ capacity to generalize reasoning strategies. 
Engel (1998) found that middle‐schoolers who started with dynamic 
geometry and tiling puzzles solved initial tasks more readily and 
produced more flexible proofs than peers taught with definition‐driven 
lectures. Stylianides and Stylianides (2009) showed that embedding 
prompts like “Can you find a quantity that never changes?” into tiling‐
puzzle lessons sharply increased students’ use of invariant reasoning in 
both domino and graph‐theoretic contexts. 

Evidence from early grades reinforces this pattern. Blanton et al. 
(2024) document kindergarteners moving from “one leftover” in 
pairing tasks to stating “odd plus odd equals even,” revealing that 
carefully designed pairing and coloring activities build nascent proof 
schemas before formal notation is ever introduced. Ginat’s (2001, 2022) 
longitudinal research complements these findings by tracing how 
guided questioning in domino‐tiling, coin‐weighing, and token‐sliding 
puzzles leads students to articulate concise, two‐sentence parity proofs, 
and how repeated exposure to invariant‐focused tasks enables fluent 
proof articulation without manipulatives. 

In preservice-teacher settings, Applebaum and Freiman (2025) 
observed novices’ progression from trial-and-error in magic-square 
explorations to frequency-pattern recognition and succinct algebraic 
proofs, and then to re-derivation of the parity argument when 
designing Bachet-style game variants. Together, these strands 
demonstrate that puzzle‐based tasks move learners systematically from 
tactile experimentation to abstract justification, enabling proof 
methods, particularly invariant reasoning, to become natural 
extensions of playful inquiry. 

CASE STUDY: THE PARITY PRINCIPLE 

Invariant puzzles invite learners to track a quantity, whether a sum, 
a color balance, or a remainder, that remains unchanged or changes in 
a predictable way under each allowable move. While one can generalize 
to invariants modulo k (Engel, 1998), the most accessible example is 

parity: tracking evenness and oddness modulo 2. In these puzzles, 
players manipulate pieces according to given rules and then ask whether 
a desired configuration can ever be reached. If the invariant calculated 
at the outset cannot match the invariant required by the goal, no 
sequence of moves can succeed. 

In the classroom, such puzzles serve two intertwined purposes. 
First, they provide concrete experiences in which every move either 
preserves or shifts a measurable quantity, prompting learners to ask, 
“Why does this pattern persist?” Second, they make abstract proof 
methods tangible: once students see that each domino covers one black 
and one white square, they can quickly articulate the invariant 
reasoning, “Because the board has two more white squares than black, 
and each domino covers one of each, no full tiling is possible” (Engel, 
1998). Ginat (2022) shows that after several game iterations, students 
express this insight succinctly: “Parity never changes under these 
moves; therefore, the configuration is impossible,” even without 
manipulatives. 

Building on this, Pintér (2010) provides a systematic recipe for 
transforming classical impossibility problems into student‐designed 
games. He finds that when learners construct and play their own 
puzzles, whether parity, coloring, or counting challenges, they naturally 
uncover the underlying invariant before any formal proof is presented. 

Below, we present a selection of classroom‐tested examples that 
illustrate this progression from hands‐on play to concise, two-sentence 
parity proofs (Fomin et al., 1996; Ginat, 2001, 2022). 

Domino‐Tiling Puzzle (Mutilated Chessboard) 

Begin by coloring an 8 × 8 chessboard in the usual alternating 
pattern, yielding 32 black and 32 white squares. If you remove two 
opposite corners, which necessarily share the same color, you end up 
with, for example, 30 black but 32 white squares (Ginat, 2001). Now 
observe that every 2 × 1 domino, by its shape, always covers exactly one 
black square and one white square when placed on the board; hence, 
throughout any partial tiling, the difference: (number of covered black 
squares)  –  (number of covered white squares)  ≡ 0 (mod 2) remains 
even, or 0 (mod 2) (Engel, 1998). Because the mutilated board begins 
with two more white squares than black, no arrangement of dominoes 
can restore balance and cover every square. In other words, the parity 
invariant immediately rules out a complete tiling (Ginat, 2001; Polya, 
1945). 

Graph‐Theoretic Puzzle (Handshaking Lemma) 

“At a party, each person shakes hands with some (possibly all or 
none) of the other attendees. Is it possible for exactly one person to have 
shaken an odd number of hands?” 

Model each person as a vertex and each handshake as an edge. Each 
handshake increases the degree of two vertices by +1, so the sum of all 
degrees increases by 2, preserving the parity of “sum of degrees” (which 
begins at 0). Because an even sum of degrees implies an even number of 
odd‐degree vertices, exactly one odd‐degree vertex cannot occur (Ginat, 
2022). An even sum of integers implies an even number of odd integers 
among them. Hence, the number of vertices of odd degree is even.  

The 15-Puzzle (Sliding-Tile Puzzle) 

The classic 15-puzzle consists of fifteen numbered tiles (1 through 
15) arranged in a 4 × 4 frame with one space. A legal move is to slide a 
tile adjacent to the empty spot into that spot. Although the usual “goal” 
configuration is given in Figure 1, not every scrambled arrangement of 



4 / 8 Applebaum / Contemporary Mathematics and Science Education, 6(2), ep25017 

the fifteen tiles can be solved. The reason is a parity invariant that 
combines: 

− The number of “inversions” in the permutation of the fifteen 
tiles (when you list them in reading order, ignoring the blank). 

− The row position of the blank tile (counted from the bottom). 

Whenever you slide a tile into the blank, this combined quantity 
will always remain either even or odd; it never changes parity. Since the 
goal arrangement has a specific parity, any starting configuration with 
the opposite parity cannot (by any sequence of legal moves) reach that 
goal. 

How to compute the parity invariant? 

1. Flatten the grid into a list: Look at the current 4 × 4 grid and 
read it row by row from top to bottom, left to right. Whenever 
you encounter a blank, skip it. This produces a list of fifteen 
numbers (t1, t2, …, t15), which is some permutation of 1 through 
15. 

2. Count the inversions: An “inversion” is a pair of positions (i, j) 
with i < j but ti > tj. In other words, you look through your 
fifteen-number list and count how many times a larger number 
appears before a smaller number. Call that count Inv = {(i, j)∣ 1 
≤ i < j ≤ 15, ti > tj}. For example, if your flattened list starts 
(8, 3, 5, …), then 8 forms inversions with 3, 5, and any smaller 
numbers that appear later. 

3. Record the blank’s row from the bottom: Find which row (1 
through 4) the blank occupies, counting from the top as row 1 
down to row 4. Let’s say the blank is in row number r. Define 
R = 5 – r, so that R = 1 if the blank is on the bottom row, R = 2 
if it’s on the third row, R = 3 for the second row, and R = 4 if it 
is on the top (in the usual goal, the blank is on row 4, so R = 1). 

4. Finally, form P  = (Inv + R) mod 2 is the parity invariant: it never 
changes when you slide a tile into the blank. Why? 

Sliding a tile within the same row does not change how many 
inversions there are, because that tile only moves one position left or 
right among tiles that remain in the same relative order. 

Sliding a tile up or down changes the blank’s row by ±1 (so R flips 
parity) but also moves that tile past an even number of other tiles in the 
flattened list (so “Inv” also changes by an even number). Either way, Inv 
+ R stays the same mod 2. 

Because the goal state has a known parity (Inv = 0 and R = 1), any 
starting configuration whose (Inv + R) mod 2 differs from 1 is 
unsolvable. 

Example of checking a configuration 

Suppose the tiles are arranged as in Figure 2. 

1. Flatten (omit the blank): (1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 10, 12, 13, 
14, 15). The only inverted pair is (11, 10). So Inv = 1. 

2. Blank’s row from the bottom: The blank is in row 4 (the bottom 
row), so r = 4 and R = 5 – 4 = 1. 

3. Compute parity: P = (Inv + R) mod 2 = (1 + 1) mod 2 = 0. But 
the goal’s parity is (0 + 1) mod 2 = 1. Since 0 ≠ 1–this particular 
swap of 10 and 11 cannot be solved. 

Coin‐Flipping Puzzle (Parity of Heads Invariant) 

Consider a row of n coins (for example, n = 7), each showing either 
heads (H) or tails (T). A single legal move is to choose any two coins 
and flip both (i.e., H→T or T→H) simultaneously. We claim that if you 
start with an odd number of heads, you can never reach the “all-tails” 
configuration (zero heads). 

1. Define the invariant: Let H be the current number of heads. 
Each move flips two coins, so H changes by: 
• −2, if both chosen coins were heads (two heads become two 

tails) 

• 0, if one head and one tail are flipped (one head lost, one 
gained) 

• +2, if both are tails (two tails become two heads) 

In every case, ΔH is an even integer. Equivalently, H mod 2 remains 
constant after each move. 

2. Apply to the puzzle: If you start with an odd number of heads, 
then H mod 2 = 1. The “all-tails” state has H = 0, so H mod 2 = 0. 

Since parity (H mod 2) can never change from odd to even under 
our move rule, it is impossible to reach all tails from any odd-heads 
starting configuration. 

Parity‐Based Strategy Game (Take‐from‐Ends) 

Even length invariant strategy 

Consider a row of 2n numbers a1, a2, …, a2n. Two players alternate 
taking either the leftmost or rightmost number; each wants to 
maximize their sum. 

Compute: Sodd = a1+a3+⋯+a2n−1 and Seven = a2+a4+⋯+a2n.  

Whichever of these two sums is larger, call that your target parity 
class. If Seven ≥ Sodd , you will collect exactly the original even indices {2, 
4, …, 2n}. Otherwise, you collect the original odd indices {1, 3, …, 2n–
1}. 

Strategy on each of your turns (row has even length): 

1. Look at the two ends of the current row. 

2. Determine which one is in your target set (i.e., which end’s 
original index belongs to your chosen parity). 

3. Remove that end. 

Because the row length is even on your turn, exactly one of the two 
ends will be from your chosen original parity set. By always taking 
exactly that one, you ensure you eventually collect all n elements of your 
target parity. The opponent can never grab one of your target ends, 

 
Figure 1. The classic 15-numbers puzzle (Created by the author) 

 
Figure 2. The inverse 15-numbers puzzle (Created by the author) 
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because on each step, he has on both ends the numbers with odd 
indexes. Thus, you guarantee the entire target set. 

Example: The next eight numbers given in the row: [2, 5, 3, 7, 10, 
4, 1, 12]. Indexing (original) is given in Table 1. 

The sum of the original numbers in even positions is 5 + 7 + 4 + 12 
= 28. The sum of the original numbers in odd positions is 2 + 3 + 10 + 
1 = 16. So, the even‐index set {5, 7, 4, 12} is our target. 

Turn by turn: 
1. First player’s move N1: Ends are 2 (orig index 1, odd) and 12 

(orig index 8, even). Since we target the original even indexes, 
we take 12. 

2. Opponent’s move N2: Now row is [2, 5, 3, 7, 10, 4, 1] (length 
7). The opponent can take either end. The ends are: 2 (orig 
index 1),   1 (orig index 7).  

Neither 2 nor 1 is in our target {5, 7, 4}. If the opponent takes 2 or 
1, it doesn’t cost us one of our targets. Suppose he takes 1. 

3. First player’s move N3: Now row is [2, 5, 3, 7, 10, 4] (length 6). 
The ends are 2 (orig index 1),  4 (orig index 6). 

4. Among {2, 4}, only 4 (orig index 6) is in our target {5, 7, 4}. So, 
we take 4. 

5. Opponent’s move N4: Now row is [2, 5, 3, 7, 10] (length 5). The 
opponent chooses either end. The ends are 2 (orig 1) and 10 
(orig 5). Note 10 (orig index 5) and 2 (orig index 1) are not in 
our target (orig even). In either case, we still have all of {5, 7} to 
collect. Suppose the opponent takes 10. 

6. First player’s move N5: Row is now [2, 5, 3, 7] (length 4). Ends 
are 2 (orig 1) and 7 (orig 4). Among these, 7 (orig index 4, even) 
is in our target. So, we take 7. 

7. Opponent’s move N6: Row is [2, 5, 3] (length 3). Ends are 2 
(orig 1)  and 3 (orig 3). Neither is in our target {5}. Suppose they 
take 2. 

8. First player’s move N7: Row is [5,3] (length 2). Ends are 5 (orig 
2) and 3 (orig 3). Among these, 5 (orig index 2) is our last target, 
so we take 5. 

9. Opponent’s move N8: Only [3] remains. An opponent takes 3. 

Collections: First player collected {12, 4, 7, 5} and the sum is 12 + 4 
+ 7 + 5 = 28. The opponent collected {1, 10, 2, 3} and his sum is 16. 

That matches exactly the original even‐position total (28) versus 
odd‐position total (16). The first player wins by taking the ends that 
belonged to the original even indices. 

Then the winning strategy for the game with even‐length row (2n 
elements) is:  

1. Compute Sodd = a1 + a3 + ⋯ + a2n−1, Seven = a2 + a4 + ⋯ + a2n.  

2. “Let “target” = whichever of {ai: i odd} or {ai: i even} has the 
largest total.” 

3. On each turn, when the row has an even length, exactly one end 
belongs to the target. Remove that end. 

4. This process ensures you collect all n of those target‐parity 
positions, whose sum is max (Sodd, Seven). Since it is ≥ 0.5S2n, 
you cannot lose. 

No parity‐only win for odd length 

By contrast, when the row has odd length (2n + 1), no first‐move 
choice can guarantee you’ll later be able to remove all of one parity class: 

Whichever end you remove on move 1, you hand the opponent a 
chance to grab one of your would‐be targets from the even‐length 
remainder’s end. 

After that removal, the opponent controls whether your next two 
“parity ends” remain aligned to let you take them all. In many examples 
(like [3,6,8,10,4]), whichever single end you discard first, the opponent 
can immediately take one of your large‐value targets, stopping you from 
ever collecting the full parity set. 

A concrete counterexample: Take the 5-element row: [3,  6,  8, 
 10,  4]. 

Compute original parity sums: 

The sum of the numbers with odd indexes is Sodd = 3 + 8 + 4 = 15, 
and the sum of the numbers with even indexes is Seven = 6 + 10 = 16.  

So the even-indexed total (16) is larger. 

Naive “take-only-even-positions” idea: 

You might think, “because 6 + 10 > 3 + 8 + 4, I’ll aim to grab exactly 
a2 = 6 and a4 = 10.” 

But a2 and a4 are not both at the ends of the 5-element row. They 
only become “even-positions” if you first trim to length 4. As soon as 
you remove one end, the opponent can remove whichever even-
position you need. 

Case A: Remove a1 = 3. Remainder [6, 8, 10, 4]. Now, “even 
positions” in this 4-element list are {8, 4} = 12, “odd positions” are {6, 10} 
= 16. You want {6, 10}. But “6” sits at index 1 (an odd index) and “10” at 
index 3. The ends of [6, 8, 10, 4] are 6 (good) and 4 (not in your target). 
If the opponent on their turn removes the end 4, you must remove 6 
(yes). But if the opponent removes 6, you are then forced to remove 4, 
which is not in your target. Consequently, the opponent can steal 10 
afterwards, leaving you with at best 3 + 6 or 3 + 4, and they end up with 
10+something larger. You lose. 

Case B: Remove a5 = 4. Remainder [3,  6,  8,  10]. Now “even 
positions” in {3, 6, 8, 10} are {6, 10}, which is indeed the larger half of 
that 4-element list. You aim to collect exactly {6, 10}. But the ends of [3, 
6, 8, 10] are 3 (left) and 10 (right). The opponent can remove 10 on 
their first turn, leaving [3, 6, 8]. At that point, the two remaining 
“targets” (6 and 10) have been split: 10 is gone, and you cannot forcefully 
take 6 next because your only legal move is from an end. If you take 8 
(the best you can do from the ends of [3, 6, 8]), the opponent snatches 
6 on their following turn, and you wind up losing again. 

On an odd‐length row, parity alone offers no guaranteed win: 
whichever end you choose on your first move, your opponent can 
always reply in a way that prevents you from capturing every element 
of the larger‐sum parity class. In other words, for a row of 2n + 1 
numbers, no fixed “take‐from‐parity” rule locks down all the high‐value 
parity positions, so parity by itself cannot force a win. 

Table 1. Numbers and their index 
i 1 2 3 4 5 6 7 8 

ai 2 5 3 7 10 4 1 12 
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PEDAGOGICAL ADVANTAGES AND 

IMPLICATIONS  

Integrating proof instruction into game- and puzzle-based activities 
transforms students’ relationship with proofs, turning abstract exercises 
into engaging challenges that tap into natural curiosity and 
competitiveness. As Csikszentmihalyi and Csikszentmihalyi (1990) 
describe, this sense of “flow” emerges when learners become fully 
absorbed in a task. Ginat (2022) illustrates this effect: middle-schoolers 
collaborating on parity token-sliding games persist eagerly, while 
Blanton et al. (2024) report kindergarteners beaming with pride as they 
explain why a pairing puzzle “won’t work.” Stylianides and Stylianides 
(2009) confirm that invariant puzzles foster more positive attitudes 
toward proof than traditional, definition-driven lessons. 

Recasting proof as play also reduces the anxiety that often hinders 
students’ willingness to attempt original arguments. In Ginat’s (2001) 
classroom studies, repeated failed domino placements become data for 
discovery rather than indicators of personal failure. Likewise, Hannula 
(2012) shows that high-school students exploring geometric proofs 
with pattern-block puzzles report lower mathematics anxiety and 
greater readiness to tackle symbolic proofs than peers who begin with 
abstract exercises. Even the youngest learners, when faced with an 
unpaired counter, treat mistakes as part of exploration, creating a safe 
environment where trial and error, not fear of embarrassment, drives 
discovery (Blanton et al., 2024). 

Games and puzzles naturally create moments of “productive 
impasse,” which Vygotsky (1978) and Polya (1945) identify as essential 
for learning. Struggling to tile a mutilated chessboard or solve a parity-
sum puzzle leads students to ask, “Why won’t this work?”, a question 
that primes them for the formal invariant argument. Engel (1998) 
demonstrates that learners who navigate such impasses more readily 
adopt the concise proof structure needed to resolve the challenge. 

Moreover, encountering the parity principle across varied contexts, 
domino tiling, handshake graphs, number-theoretic sums, and sliding-
tile puzzles, builds robust proof schemas that transfer effortlessly to 
purely symbolic problems. Engel’s (1998) annotated puzzle collections 
and Weber’s (2001) research together confirm that making strategy 
explicit deepens learners’ ability to apply invariant reasoning in new 
domains. In teacher-education settings, Applebaum and Freiman 
(2025) observe that preservice teachers translate insights from 3×3 
magic-square explorations directly into succinct algebraic proofs, 
further attesting to the power of puzzle-based learning. 

Collectively, these research-backed advantages demonstrate that 
puzzles are far more than motivational hooks. They comprise an 
integrated pedagogical framework that deeply engages students, lowers 
affective barriers, scaffolds critical impasses, promotes transfer of proof 
skills, and nurtures creative differentiation, transforming proof from a 
daunting ritual into a natural extension of playful inquiry. With these 
benefits in mind, Section 6 outlines concrete classroom strategies for 
weaving games and puzzles into proof instruction. 

RECOMMENDATIONS FOR PRACTICE  

To bring play‐based proof learning into everyday instruction, begin 
by inviting students to explore parity with tangible materials, dominoes 
on a checkerboard, colored counters for pairing tasks, or simple hand‐

shake graphs. These concrete investigations allow learners to 
experiment freely, notice emergent patterns, and develop an intuitive 
sense of invariance (Stylianides & Stylianides, 2009). As students grow 
comfortable with physical supports, instructors should introduce 
heuristic prompts, “Which quantity remains unchanged when you 
move a piece?” or “What happens if we remove two same‐color 
corners?”, to guide attention toward the core proof insight long before 
formal notation appears (Polya, 1945; Stylianides, 2007). 

Once learners begin articulating their own observations, gradually 
withdraw manipulatives and color‐coding, encouraging them instead to 
describe the invariant in symbolic parity terms. At this stage, reinforce 
transfer by rotating through varied contexts, domino‐tiling, the 
handshake‐lemma, take‐from‐ends games, sliding‐tile puzzles, and 
number‐theory challenges, so that students apply the same invariant 
reasoning in multiple problem settings (Stylianides & Stylianides, 
2009). 

Collaborative group work amplifies these discoveries. Assign roles 
such as “puzzle manipulator,” “recorder,” and “explainer” so teams 
negotiate meaning through dialogue and then share insights in a whole‐
class discussion. This social discourse, rooted in Vygotsky’s (1978) 
model of mediated learning, helps learners connect hands‐on activities 
to abstract proof structures. 

Assessment should reflect this developmental progression. Use 
brief “parity checks”, for example, asking students to explain in two 
sentences why a 6 × 6 board missing one corner cannot be tiled, and 
evaluate with rubrics that emphasize invariant identification, parity 
comparison, and logical clarity (Stylianides, 2007; Stylianides & 
Stylianides, 2009). Incorporate peer review so students both articulate 
and critique proof strategies, fostering a communal approach to 
mathematical arguments. 

Technology can extend and enrich these experiences. Dynamic 
geometry software such as GeoGebra enables interactive checkerboard 
simulations and automatic color‐counting, accelerating exploration of 
multiple cases (Weber, 2001). Online puzzle platforms with real‐time 
feedback further support strategic adjustment and deepen students’ 
understanding of parity as an invariant property. An interdisciplinary 
lens–combining cognitive, sociocultural, and motivational factors–has 
been advocated to support robust learning in STEM (Taasoobshirazi 
et al., 2024), and our parity-based games fit naturally within this broad 
paradigm. 

To cultivate metacognitive reflection, encourage students to keep 
“notice, wonder, generalize” journals. Recording observations (“I always 
had one extra white square”), questions (“Could another shape avoid 
this parity issue?”), and general principles (“Any board with unequal 
colors cannot be tiled with dominoes”) solidifies the shift from concrete 
action to abstract reasoning (Harel & Papert, 1991). Inviting learners to 
design their own parity puzzles, whether by modifying Bashet‐style 
games or creating novel grid challenges, engages them in reverse 
engineering invariant constraints, further reinforcing proof schemas 
(Applebaum, 2025; Polya, 1945). 

Because primary teachers already allocate substantial time to games 
(Russo et al., 2021), linking those familiar activities directly to proof 
tasks offers a scalable path for curriculum integration. To ensure 
effective implementation, professional learning is essential: workshops 
that immerse educators in parity puzzles, model scaffolding techniques, 
and guide the sequencing of activities build necessary pedagogical 
expertise. Collaborative lesson studies then allow teachers to plan, 
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observe, and refine puzzle‐based proof lessons, sharing strategies for 
addressing student misconceptions and crafting effective heuristic 
prompts (Engel, 1998; Stylianides, 2007). 

Finally, Stiefenhofer’s (2022) fuzzy‐evaluation approach suggests a 
replicable rubric for curriculum designers to measure the effectiveness, 
efficiency, and learner satisfaction of game‐based proof pedagogy, 
supporting continuous refinement of proof instruction. 

By weaving together hands‐on play, heuristic questioning, varied 
contexts, collaborative discourse, targeted assessment, technology 
integration, reflective journaling, and sustained professional support, 
teachers can create vibrant classrooms in which proof naturally emerges 
from the joy of discovery. 

CONCLUSION 

This paper has shown that thoughtfully designed math games and 
puzzles create a crucial pathway from hands‐on exploration to formal 
proof. Rooted in Piagetian and Vygotskian theories and enlivened by 
Polya’s (1945) problem‐solving heuristics, puzzle‐based instruction 
leverages students’ intuitive understanding of invariants, most notably 
parity, to foster deep conceptual insight, encourage flexible transfer of 
reasoning, and build positive attitudes toward proof. Empirical 
evidence from kindergarten classrooms through preservice‐teacher 
programs consistently demonstrates that learners who first encounter 
proof through play not only craft more coherent, generalizable 
arguments but also approach proof tasks with greater confidence and 
persistence than peers taught via traditional lectures. 

Using the Parity Principle as our guiding case study, we have 
illustrated how a single invariant argument can be introduced across 
multiple contexts, domino tiling, handshaking graphs, token‐sliding 
games, magic squares, and sliding‐tile puzzles, each time following the 
same succinct proof template. This repeated engagement roots abstract 
proof schemas in concrete experience and embeds the heuristic “what 
stays the same” well before students face formal symbolic notation. Our 
recommendations described how teachers can sequence instruction, 
starting with manipulatives and heuristic prompts, moving through 
collaborative discourse, and enriched by technology‐enhanced 
exploration, so that responsibility for proof construction gradually 
shifts onto learners themselves. 

Looking ahead, this play‐based framework offers fertile ground for 
innovation and further study. Math games and adaptive puzzles can 
extend invariant reasoning into advanced domains, from linear algebra 
to combinatorics. Longitudinal research could examine how early 
parity experiences influence success in proof-intensive courses, and 
targeted professional development could identify the supports teachers 
need to implement puzzle-based pedagogy effectively. By 
reconceptualizing proof not as a rote ritual but as an outgrowth of 
playful inquiry, we can nurture generations of learners who perceive 
proof not as obstacles to memorize, but as elegant explanations to 
uncover, adapt, and share. 
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