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ABSTRACT 

This article describes the strategies of 71 students, ages 11-13, to multi-digit addition and subtraction problems using 
a free-choice format. Students were given the opportunity to solve each task two ways. Results showed that the 
majority of students converted the equation form of the task to a column method as their first preference. The 
column method incorporated standard algorithm strategies starting with the ones place and regrouping to higher 
place values to calculate the value of the unknown. On one of the three tasks, more than half of the students 
switched to a relational thinking strategy to find the unknown as their second-choice strategy. Less than half of the 
students used number relationships or equivalence strategies on the other two, more complex tasks for either of 
the two preferences. The overall preference for column methods as the first strategy choice was consistent across 
all three tasks. 
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INTRODUCTION 

The development of algebraic reasoning is considered a 

foundational tool for success in secondary mathematics learning. Two 

broad areas considered impactful in the development of algebraic 

reasoning are properties associated with generalized arithmetic and 

functional relationships (Blanton & Kaput, 2005, 2017). Increased 

attention has been given to the role of the equal sign in students’ 

performance on various equivalence tasks (Carpenter et al., 2003; 

Knuth et al., 2006). Knuth et al. (2006) found that students ages 11-13 

years old, or middle grade bands held different views of the equal sign 

and those views impacted their performance on algebraic tasks that 

involved math equivalence. They categorized their responses as 

“operational” if they perceived the equal sign to represent “the answer” 

to an equation task and “relational” if they understood the equal sign to 

represent mathematical equivalence. Carpenter et al. (2003) further 

described students’ relational thinking strategies as efficient 

computation methods based on number relationships and properties of 

operations such as the associative property of addition.  

This article focuses on the aspect of algebraic reasoning related to 

properties of operations and generalized arithmetic and presents 

preferred strategy choices of 10- and 11-year-old students in response 

to finding the unknown quantities in multi-digit addition and 

subtraction problems presented in equation format. 71 students 

participated in the study. Students were given the opportunity to write 

two different strategies for each task using a free-choice structure. 

Results showed that the majority of students relied on column 

approaches to determine the unknown rather than more efficient 

methods utilizing number relationships. However, students also 

showed some relational thinking strategies when prompted for a 

second method to determine the unknown.  

BACKGROUND 

Prior research has examined students’ interpretation of the equal 

sign along with types of strategies they use to work with operations in 

equation form as well as presentation of computation problems in more 

traditional forms such as column methods or standard algorithms based 

on alignment of place values. The findings of these studies will be 

highlighted by first reviewing the research related to interpretations of 

the equal sign and algebraic reasoning followed by descriptions of 

recent studies that have examined students’ computation strategies for 

multi-digit operations in a variety of research contexts. 

Equal Sign 

Analysis of elementary age students’ understanding of the equal sign 

provided evidence that relational views of the equal sign also indicated 

increased flexibility with using number relationships to compute 

efficiently with equations (Falkner et al., 1999; Molina & Ambrose, 

2006). For example, in their instructional sequence with third grade 

students, Molina and Ambrose (2006) found that students began to 

think more relationally about the equal sign when misconceptions 
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about it were made explicit and alternative notations were introduced, 

such as arrow language to string computations and use of equations to 

show results of calculations. In a more recent study, Fyfe et al. (2018) 

analyzed the responses of students from ages 12 to 16 to a series of math 

equivalence tasks and found that students with some formal algebraic 

instruction were more likely to be successful on complex tasks 

involving larger numbers and variables on both sides of the equal sign. 

Students’ understanding of the meaning of the equal sign has been 

shown to have implications for students across the middle school 

grades, or roughly ages 10 to 14 (Knuth et al., 2006, 2008). The meaning 

of the equal sign was shown to be central to students’ thinking about 

equations and determining the meanings of quantities and variables. 

Students who stated the meaning of the equal sign as “the answer to” 

were considered to have an operational view of the equal sign and 

would perform whatever computation was asked on the left side of the 

equal sign rather than consider the value that would make both sides 

equal. Knuth et al. (2006) found that students with a relational 

understanding of the equal sign outperformed students with an 

operational view on equivalence tasks. For example, an equivalence task 

might involve asking students to decide if two equations in different 

forms (200-199=x and 199+x=200) have the same solution. 

 Falkner et al. (1999) found that a low percentage of 10- and 11-year 

old students responded, “seven”, to the equation asking what number 

would need to replace the question mark in order to make the sentence 

true for 8+4=?+5. The majority of students disregarded the five 

altogether and determined that 12 should go in the box suggesting an 

operational view of the equal sign.  

Relational approaches to find the answer could involve 

determining what number added to five gives the same sum as eight 

plus four or looking at the relationship between four and five and 

subtracting one from eight to make both sides the same. Blanton et al. 

(2019) found that curricular aspects including use of variable notations 

enhanced upper elementary students’ understanding of arithmetic 

properties, expressions, equations, and functional relationships. These 

studies indicate the importance of explicit use of equations in students’ 

algebraic reasoning development in the elementary (aged five- to 10-

year-old students) and middle grades (11- to 14-year-old students). 

Column Methods  

Column methods refer to standard algorithms in which numbers are 

stacked based on place values and computations are performed right to 

left including situations with multi-digit numbers and regrouping 

across place values. The negative effects of standard algorithms, 

typically notated in columns based on place values, for computing with 

single and multi-digit numbers have been discussed for decades (e.g., 

Kamii, 1994, 1998, etc).  

Kamii (1998) described detrimental effects of children learning 

column methods focused on digit explanations for computing devoid of 

place value considerations and conceptual understandings of numbers 

in general. The standard column approaches also have been shown to 

be counterintuitive to how students naturally add and subtract with 

multi-digit quantities. For example, when students have the 

opportunity to add and subtract multi-digit numbers they are more 

likely to work with higher place values first and smaller place values 

after (Kamii, 1994). In contrast, the standard column approach typically 

focuses on computing with the ones place values first.  

Recent studies have also identified student misconceptions with 

column methods. Hickendorff et al. (2019) made the distinction 

between digit-based algorithms focused on single integer computations 

within the column-based notation without consideration of place value 

and number-based algorithms in which place value is explicit in the 

strategy. Fischer et al. (2019) studied the responses of second graders to 

a multi-digit word problem. The results showed that, in general, 

students who used non-column approaches such as the empty number 

line were more successful with their computation strategies in cases in 

which they used a valid strategy.  

Equations and Column Methods 

Column methods that emphasize digit operations as opposed to the 

place values they represent have been shown to limit students’ success 

on a variety of regrouping operations despite the long tradition of 

teaching them in the elementary mathematics curriculum. Student 

errors with regrouping across place values and misconceptions of 

operations with numbers in general are just a few of the concerns noted 

across the literature with respect to column strategies. Ebby (2005) 

documented the procedural interference of column approach over time.  

A common misconception for students with the subtraction 

column methods is that students mimic an explanation given to them 

as a rationale for regrouping. For example, “I cannot take five away 

from zero, so I have to borrow a one from the tens place”. These types 

of explanations are not only erroneous mathematically, but potentially 

set the stage for further misconceptions when positive and negative 

numbers and operations are formally introduced in later grades. Other 

researchers have examined the impact of these types of “bridging” errors 

in children’s column methods (Vermeulen et al., 2020). 

 Curriculum materials and other written mathematics materials 

often present multi-digit addition and subtraction tasks in column form 

rather than in equation form. Consider the equation, 200-199=x. When 

represented in column form, students tend to move into the regrouping 

algorithm beginning with the ones place rather than recognizing that 

the difference between 200 and 199 is one (see Figure 1). The other 

consideration is that the conversion of the equation notation to a 

column method based on place value eliminates the equal sign. An open 

question is how an overemphasis on column methods in the upper 

elementary grades potentially interferes with students’ use of relational 

strategies when encountering multi-digit computation problems 

written in equation form. The mathematical significance of equations 

is connected to both understanding of the meaning of the equal sign and 

the included operations.  

Mathematical Tasks 

The term “tasks” is used in a variety of ways to refer to different 

types of mathematical situations and problem-posing environments. 

Some of the literature refers to distinctions made between tasks based 

on high versus low cognitive demand and also considers the role of how 

the task is enacted (Boston & Smith, 2011). Others have described the 

difference between open versus closed tasks (Boaler, 1998). Klein and 

Leikin (2020) make distinctions among four different types of tasks: 

multiple strategies tasks (MSTs), multiple outcomes tasks (MOTs), 

investigation tasks (ITs), and sorting tasks (STs). They describe MSTs 

as having an open start path with various types of strategies but have 

the same answer or solution. In contrast, MOTs can have various types 

of strategies and answers.  
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Strategy Preferences 

Students’ thinking and strategy preferences for whole number 

operations have been examined through a variety of methods. Several 

of the more recent studies have utilized aspects of Lemaire and Siegler’s 

(1995) four dimensions of strategic change to understand students’ 

strategy choices and preferences for various computational strategies. 

The fourth dimension involves how strategies are chosen in different 

types of environments. Factors include but are not limited to knowing 

whether there are multiple strategies possible for a problem, deciding 

which strategy is most acceptable, and/or which strategy might be more 

efficient. 

 Some recent studies have used “choice/no choice” approaches to 

determine strategy preferences for subtraction calculations (Torbeyns 

et al., 2018; Van Der Auwera et al., 2023). Results of both studies 

indicated a preference by 9- to 11-year old students to initially 

incorporate direct subtraction (DS) or SD approaches. However, when 

given a choice of strategies, many of these students preferred a 

“subtraction by addition or SBA” approach to solve the problem, which 

in some cases is more efficient than the standard algorithm. For 

example, 200-199=? would be translated to 199+?=200 and solved by 

incrementing or adding up one to 200.  

Other research on strategy preferences incorporated a “free-choice” 

format for studying students’ use of standard algorithms and alternative 

algorithms such as the use of estimation and inverse operations (Caviola 

et al., 2018; Jóelsdóttir & Sunde, 2022; Lord & Stylianides, 2019). For 

example, Lord and Stylianides (2019) examined the strategy choices of 

10- and 11-year-old students through their responses to written whole 

number tasks and follow-up interviews with selected subpopulations of 

students. They found that while most students preferred formal 

algorithms as their first choice, high performing students used a variety 

of strategies as a follow-up choice or to check their answer to their 

formal algorithm method.  

The purpose of this study was to consider strategy preferences 

within a free-choice format that also provided the opportunity for 

students to try two methods for solving each task. The following are the 

research questions that guided this study: 

1. What were students’ initial strategy preferences when 

determining the unknown for linear equations involving 

multi-digit addition and subtraction? 

2. What were students’ preferences for a second strategy/notation 

when determining the unknown for the same linear equations?  

METHOD 

The participants for this study were 71 students, ages 10-12, and 

their two teachers from a state in the southwestern region of the US. 

This was considered a convenience sample as both teachers volunteered 

to have the linear equation tasks posed to their students utilizing a free-

choice methodology. One of the teachers taught 10- and 11- year-old 

students in a self-contained mathematics class consisting of majority 

Caucasian students. The other teacher taught 11- and 12-year-old 

students from three mathematics classes and the majority of the 

students were Hispanic/Latino. Separate analyses and categorization of 

strategies showed percentages similar to the aggregate data and 

therefore presentation of the results was combined for both teachers.  

The teachers had participated in a middle level mathematics 

professional development (PD) program focused on students’ thinking 

about number concepts, operations, and algebraic reasoning. The goal 

of PD was to provide opportunities for teachers to unpack student 

generated strategies and think about ways to represent them that make 

the properties more explicit. The linear equation tasks were posed 

during their regular mathematics class. No strategies were given to the 

students. Students worked alone on their tasks and used markers to 

track any changes they made to the work for both strategies. The author 

was a non-participant observer in both classrooms during data 

collection.  

Tasks 

Each task was presented in a typed format with an open space 

divided in two sections. The left space was labeled as “first method” and 

the adjacent space was labeled as “second method”. Type of tasks posed 

were considered MSTs since students, as verified by their respective 

teachers, had not been formally taught methods of solving linear 

equations for the unknown. In other words, they had not been shown 

the process of adding or subtracting quantities from both sides to isolate 

unknown, which are typical strategies of an algebra course. Students 

were asked to write their responses starting with their initial choice of 

strategy as their first method and then write a second method if they 

could think of a different way to show how they solved for unknown.  

Table 1 shows a partial list of equations posed to students. The 

construction of the equations was intentional to emphasize number 

relationships and basic operations. For purposes of this article, results 

of tasks A, B, and F for the 71 students will be described in the results 

section. The complete list of tasks posed are listed in Appendix A. Each 

task was designed specifically to assess whether students would identify 

a numerical relationship among the quantities and the equal sign to 

efficiently determine the value for the unknown.  

Categories of Responses 

A constant comparative method was utilized to categorize the type 

of strategy used (Bogdan & Biklen, 2003). The focus categories were 

based on strategies used by the majority of students. There were two 

open spaces under each linear task for a first and second strategy or 

method for determining the value of the unknown. Responses were 

organized into three categories: 

1. Column method (with regrouping) 

2. Number relationship/property of operation 

 

Figure 1. Example of column method for tasks A, B, & F (Source: 

Example student responses) 

Table 1. List of equations 

No Equation 

A 200-199=x 

B y+45=48+83 

F 82-37=h-47 
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3. Other 

The author and the classroom teachers categorized the responses 

separately with 82% agreement on which category to place the first and 

second methods for each task. For categories in which there was 

disagreement, discussions of whether differences in notation versus 

differences in method of calculation were discussed. It was agreed that 

if, for example, a student wrote 199+1=200, in either equation form or 

column form, both would be characterized as number relationship or 

SBA strategies.  

The examples in Figure 1 show the conversion of tasks A, B, and F 

from equation form to column form involving the use of regrouping or 

standard algorithm approaches. Task A required one subtraction to 

complete the computation. Column methods for tasks B and F required 

multiple steps to complete computations and determine the unknown.  

Figure 2 shows an example of using number relationships or 

relational thinking to simplify the solution process. For task A, this 

strategy represents the inverse relationship between addition and 

subtraction or SBA (Van Der Auwera et al., 2023). For task B the 

additive relationship between 45 and 48 and the recognition that the 

unknown would need to be three more than 83 or 86 for both sides of 

the equation to represent the same quantity would represent a number 

relationship strategy. The notation does not explicitly illustrate the 

associative property of addition. However, it demonstrates that if three 

is added to 45 on the left side of the equation, it is the same as 48 and 

therefore three could be added to 83 on the right side to determine the 

value for y. For task F, recognizing the difference between 47 and 37 is 

10 so h can be found by adding 10 to 82.  

Figure 3 shows examples of strategies classified as “other”. These 

included leaving the method preference space blank or using a strategy 

that did not lead to the correct answer. For task A, “other category” was 

mostly comprised of leaving answer blank or using the same strategy 

for both method options. Strategy for task B is typical of students who 

hold an “operational view” of equal sign (Knuth et al., 2006) and 

compute across equal sign rather than determining the value that makes 

both sides of the equation equal. Strategy for task F shows a potential 

misunderstanding of both subtraction operation and equal sign.  

RESULTS 

The primary approach by students on both task A and task B was to 

convert each equation to a column notation and carry out the standard 

regrouping algorithm from right to left. Table 2 shows that the 

majority of students converted the equation to column notation and 

carried out regrouping from the ones place to the 100s place, or DS to 

determine the answer as their first approach. However, 30% of the 

students utilized a number relationship strategy by either recognizing 

the difference between 199 and 200 is one by examining the equation 

or by rewriting the original equation as 199+1=200 (subtraction by 

addition or SBA), illustrating at a minimum that they had some 

understanding of the inverse relationship between addition and 

subtraction operations.  

 The option to solve the problem using a different approach shows 

that almost all of the students used an SBA strategy as either their first 

or second method. A small percentage continued to use DS methods 

while 30% did not try a second method or used a strategy that was 

similar or the same as their first approach. The responses to task B in 

terms of students’ first approaches were consistent with their responses 

to task A.  

As shown in Table 3, the majority of students converted from 

equation notation to column method to determine the value of the 

unknown as their first-choice method. Far fewer students attempted a 

number relationship strategy for task B compared to task A. However, 

while only 10% tried a number relationship strategy as their first 

method, this improved to 25% when given the option to try a second 

method.  

 

Figure 2. Number relationship strategy for tasks A, B, & F (Source: 

Example student responses) 

 

Figure 3. Example of “other” strategies for tasks B & F (Source: Example 

student responses) 

Table 2. Responses to task A 

Task A (n=71) n (percentage) Column method Number relationships Other/no response 

1st approach 49 (69%) 21 (30%) 1 (1%) 

2nd approach 8 (11%) 42 (59%) 21 (30%) 
 

Table 3. Responses to task B 

Task B (n=71) n (percentage) Column method Number relationships Other/no response 

1st approach  48 (67%)  7 (10%)  16 (23%) 

2nd approach  21 (30%)  18 (25%)  32 (45%) 
 

Table 4. Responses to task F 

Task F (n=71) n (percentage) Column method Number relationships Other/no response 

1st approach  19 (27%)  4 (6%)  48 (67%) 

2nd approach  4 (6%)  5 (7%)  62 (87%) 
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Table 4 shows the responses to task F. The difference operation in 

this task was difficult for students to think about relationally. Their first 

preference method was similar to the column method in Figure 1 in 

which they would subtract 37 from 82 to get 45 and then add 45 to 47 

to get 92. The majority of students did not get the problem correct using 

either column method or trying to use number relationships.  

Of those who did use a number relationship, they noticed that the 

difference of 10 between 37 and 47 and added 10 to 82 to determine that 

the value of h would be 92. The high percentage of students in the 

other/no response category for task F included students who could not 

think of a second strategy or subtracted 10 from 82 and answered that 

h is 72.  

The responses across all three tasks showed that the students’ 

preferred method was to convert each equation to column methods 

involving the standard algorithm to determine the value of the 

unknown. Task A showed that almost all students could use a relational 

strategy as either their first or second method of choice by using the 

relationship between addition and subtraction without the use of 

column computations to determine that x would be one. Fewer students 

showed preference for number relationship strategies on tasks B and F. 

DISCUSSION 

Historical analysis of the evolution of recordings of standardized 

algorithms described the practical aspects of recording steps, one at a 

time, with counting boards in the sixteenth century (Barnett, 1998). 

The column method for organizing steps in whole number 

computation reflects these step-by-step procedures in muti-digit 

computation for addition, subtraction, and multiplication in 

standardized algorithms. This was particularly evident in decades prior 

to the use of calculators in classrooms. The introduction of calculators 

in elementary grades mathematics instruction may have had a subtle 

impact on preference for equation notation over the column method. 

This could be due to the nature of the buttons pushed and the equal sign 

symbol on most calculators. Students’ written notations for 

computations performed with calculators in Groves and Stacey (1998) 

study showed a tendency to use equations to represent their whole 

number strategies.  

Despite the invention of calculators, the column method has been 

an enduring representation of standard algorithms in the elementary 

mathematics curriculum. Efficiency and generalizability across the 

mathematics curricula are often used to explain the continuing use of 

these algorithms. However, most topics in formal algebra courses make 

use of the equal sign in demonstrating numerical examples of properties 

and solving for unknowns. Furthermore, explorations of properties 

such as the associative property with variable notations are almost 

exclusively represented with equations, as shown in the following 

example: (a+b)+c=a+(b+c). 

Stacking the quantities with column methods to show that the sum 

of three numbers is the same regardless of which two numbers are 

added first would be considered cumbersome with the generalized 

properties of operations. Therefore, it is worth reconsidering the 

lasting transportability of the column methods in terms of mathematics 

content across the grade levels.  

Equality and Equivalence 

Linear equation tasks provide the opportunity for students to focus 

on the meaning of the equal sign and equivalence. The free-choice 

structure of the tasks with two method options seemed to provide more 

opportunities for the students in this study to use number relationship 

strategies without converting to column methods and carrying out 

cumbersome calculations based on standard regrouping algorithms. 

Algebraic activities often involve multiple variables within one 

equation. Combining like terms with variables and solving for an 

unknown with multiple variables uses equal sign notation and 

equivalence steps. Stephens et al. (2021) found that although students’ 

understandings of functional ideas in algebra waned following their 

participation in an algebra focused elementary curriculum, their 

understandings of equivalence, expressions, and equations persisted 

after the longitudinal study ended.  

71 students who completed these free-choice tasks did not seem 

hindered by the multi-step nature of task B. The majority found that 

they could subtract 45 from the sum of 48 and 83 to determine the value 

that would make both sides equal. What was potentially limiting for 

them was the inefficient methods by which they used column methods 

to find the answer. As previously stated, the equations posed were 

intentionally constructed to elicit relational thinking strategies and 

make use of number relationships. The opportunity to show a second 

strategy increased the use of a non-column method, which shows value 

of free-choice formats and not limiting students to just one method.  

Future research should consider if relational thinking approaches 

on intentionally constructed equations improve students’ performance 

on randomly constructed equations. For example, one student who 

attempted task D and gave the answer of six for the value of x used trial 

and error in a series of equations as their approach. Not all linear 

equations students grapple with in a formal algebra curriculum have 

intentional number relationships across the equal sign. Instead, they are 

constructed more on the basis of “easy to difficult” in terms of numbers 

used and steps involved. Underlying these sequences is the premise that 

a series of “undoing of operations” is required to determine the value of 

the unknown or solve for a particular variable. Task D is more typical 

of a multi-step linear equation from formal algebra course. A common 

approach to solving for x in this problem is to first multiply five by 7x 

and -33 to get 35x-165, add 165 to both sides and then divide 210 by 35 

to get six. However, an opportunity to consider that five times the 

quantity in parentheses is the same as 45, which simplifies the 

computation and illustrates a relational view of the equal sign. 

The research on the positive impacts of elementary students’ 

relational understanding of the equal sign and the potential to make 

sense of operations and equivalence when presented with tasks in 

equation form are well-substantiated in the K-8 grades. Research on 

students’ invented strategies for multi-digit computation problems also 

shows promise for their explicit understanding of numerical quantities 

and implicit understandings of algebraic properties. Future studies 

should consider impacts of standard algorithms or column methods on 

students’ interpretation and work with equations. Options to think of 

equations in more than one way appears to elicit non-column 

approaches on some tasks. However, additional studies are needed with 

larger groups of students to determine potential hinderances of column 

methods on students’ current and future algebra understandings  



6 / 8 Kent / Contemporary Mathematics and Science Education, 4(2), ep23024 

Directions for Professional Development 

Procedural interference of column methods has been lamented for 

decades (e.g., Kamii, 1998). Ebby (2005) found that even when teachers 

were implementing a reform-oriented math curriculum involving non-

column methods, the student in her case study was taught a column 

method outside of the classroom. Teachers may rely on their own 

learning of mathematics as a student and focus on column-based 

algorithms. PD programs offer the opportunity for teachers to reflect 

upon the limitations of these approaches in students’ future experiences 

in formal algebra courses. 

Carpenter et al. (2003) described advantages to explicitly focusing 

on equality, number relationships, and connections to algebra in the 

elementary grades. Early on, children intuitively engage with a variety 

of properties of operations as a part of their sense-making strategies 

with numbers and quantities. PD focused on these natural connections 

that students make provide an opportunity for teachers to explore 

alternative approaches to representing students’ thinking and bridge 

their strategies to generalized properties of operations through the use 

of equations and other non-column methods. The two teachers in this 

study were at different points in this PD. One teacher was just 

beginning this type of mathematics PD. The other teacher had 

completed three years of PD around generalized properties of 

operations diverse computation strategies with numbers. Yet, there was 

consistency with how the students approached the tasks regardless of 

teacher. The first option for all three tasks was to convert linear 

equations to column methods for majority of the participating students.  

MSTs and MOTs are beneficial for students’ learning of 

mathematics. They provide the opportunity for students to think about 

different ways to solve the same problem and explore mathematical 

notations that they might not have otherwise considered. Examining 

MSTs from at least two perspectives and being encouraged to show two 

different methods was not a core component of PD focused on 

equations. Future research should examine whether this emphasis in 

PD would translate to more flexible strategies with students. Future 

studies should also consider the extent to which the number 

relationship strategies, along with the consistent use of the equations, 

would provide more meaningful transitions for students in future 

algebra courses. 

CONCLUSIONS 

The free-choice responses from 71 students demonstrated the 

preference for column methods when given the option to show their 

own computation strategy. Students showed some capacity for non-

column approaches as their second method similar to results from other 

studies (Caviola et al., 2018; Jóelsdóttir & Sunde, 2022; Lord & 

Stylianides, 2019). The results from this study focused not only 

computation but also notation preferences. Most students who used 

number relationship strategies to simplify the solution process used 

their strategy within the equation form of the task and more closely 

representative of algebraic steps to solve linear equations. In contrast 

the conversion to column methods and regrouping strategies would be 

considered less algebraic in nature. For example, column methods 

would not transfer easily to solving for a variable in which there is more 

than one variable involved in the equation task.  

For both tasks A and B, the free-choice option to generate a second 

strategy for each task produced an increase in the percentage of students 

who used a number relationship strategy to simplify the computation 

process. Number relationship strategies indicate an understanding of 

the equal sign as a symbol for equivalence of quantities (Carpenter et 

al., 2003; Knuth et al., 2006, 2008). Knuth et al. (2006) noted that 

students who were able to use number relationships or relational 

thinking strategies performed better on equivalencing tasks than 

students who viewed the equal sign operationally.  

This study was limited to 71 students from two different teachers’ 

classes in two different districts. However, the first preference method 

for solving both tasks A and B was to convert the equation form of the 

task to column notation and carry out the standard algorithm. Task A, 

in particular, indicated that this preference may have been built on prior 

experiences with multi-digit subtraction. It may also reveal an over 

reliance of column methods in cases in which number relationship 

strategies allow for more efficient computation strategies. The 

preference for column methods raises a question for follow-up studies. 

Does reliance on column methods interfere with interpretation of 

equations and algebraic reasoning and sense making with properties of 

operations? Column methods for whole number calculations have 

endured in the US regardless of potential limitations to understandings 

and later learnings. The rationale for continued teaching of these 

methods is complicated and not due to any single factor.  
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APPENDIX A 

 

Table A1. List of equations 

No Equation 

A 200-199=x 

B Y+45=48+83 

C .25×84=1×b 

D 5(7x-33)=45 

E 6÷c=12 

F 82-37=h-47 

G 12×2¾ =24+m 

H J×0.1=2.46 
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